
7 AD-A130 048 RESEARCH ON SYNTHESIS
OF CONCURRENT COMPUTING

SYSTEMS 1/1
(U) KESTREL INST PALO ALTO CA RNM KING ET AL. SEP 82
AFOSR-TR-83-0562 F49620-82-C-0007

UNCLASSIFIED F/G 9/2 NL

.EN....MEIIII.

.M..NEMhhhII.mmI.IIIIIII

2 82

L 2

IIIJIL25 -4 111_ IL6

MICROCOPY RESOLUTION TEST CH{ART
V,N '- N ,

. 7 -- -- ---... .

AFOSR-TR- ;o 0562 /

KES.U.82.10

RESEARCH ON SYNTHESIS OF CONCURRENT

COMPUTING SYSTEMS

by

Richard M. King

Thomas C. Brown

Cordell Green
Principal Investigator

Kestrel Institute
1801 Page Mill Road
Palo Alto, CA 94304

September, 1982

FINAL TECHNICAL REPORT

Prepared for:

Air Force Office of Scientific Research

Building 410
Boiling AFB, DC 20332

Research sponsored by the Air Force Office of Scientific Research (AFSC), United States Air Force,
> under contract F49620-82-C.0007. The United States Government is authorized to reproduce and

0... distribute reprints for governmental purposes notwithstanding any copyright notation hereon.

This document was prepared under the sponsorship of the Air Force. Neither the U. S. Government
nor any per3on acting on behalf of the U. S. Government assumes any liability resulting from the

L use of the information contained in this document.

= DTIC
JUL 5

83 07 01 024 A
Approved for public relea'e
distributio un limited.

M L, , ~ II I I III I II I

___~ U LILASSUIFD
REPORT DOCUMENTATION PAGE !READ INSTRUCTIONS

BEFORE CO'1PLETLNG Ff)RI
"B :2 GOVT ACCESSION NO. 3 RE'-,-E T'S CATALOG NUMBERr\ii :' 2 0 s %A D -A O

053

4. TITLE nd S.btIe.) S TYPE OF REPORT 6 PERI$OZ C'vERrE

"Research On Synthesis of Concurrent FINAL TECHNICAL REPORT

Computing Systems" 02 OCT. 1981 - 30 SEPT. 1982
6 PERFORMING ORG tE* OR- NUMBER

7 AUTMOR.) 8. CONTRACT OR GRANT NUMBER(S)

Richard M. King F49620-82-C-0007
Cordell Green

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK

AREA& *ORK UNIT NUMBERSKestrel Institute 0 h"- -

1801 Page Mill Road

Palo Alto, CA 94304
I1. CONTROLL.ING OFDICE 2 PND ADRESSRT DATE).}- ' ,7/ /' 1 130 Setme 1982

>,/Y 13/ NUMBER OFPAE

14 ITORN AG tIN ' NAME &n A uMESS(il dllfeen fro Conrro1r .Af'ce) S. SECJRI
' Y

CLASS. 1.t hisrepotf

Air Force Office of Scientific Research Unclassified
Building 410

Bolling AFB, D.C. 20332 50 SECLASSIC.CA-ION COANGRAOING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approvr,, js

17. DISTRIBUTION STATEMENT (ro the ebstract entered in Block 20, if different from Report'

lei. SUPPLE=MENTARY NOTES

19 KE Y WORDS eContinue on reverse side it necesserv and identify by block number

Concurrency, Parallelism, Architectures, Synthesis, Transformation,

Interprocessor communication, Connectivity reduction

20 ABSTRACT (Continue oa, reverse side If necesserv and Identify by olock number)

We discuss the codification of programming knowledge for the synthesis of
concurrent programs. Herein is presented a semiformal derivation of
two concurrent algorithms: a concurrent version of a dynamic programming
algorithm and concurrLat array multiplication. Both derived parallel
structures run in linear Lime. The concurrent versions are significant
and complex algorithms, though they are not new and already have been
reported in the literature. The synthesis knowledge for these derivations
is embodied in seven synthesis rules. Preliminary versions of which are

DD ,'JA,", , 1473 UNCLASSIFIED

SECURITY CLASSIFICATION or T.iS PAGE '*1en Ot F nr-.ed

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(Wh.1. Ova. Fntf,.d)

BLOCK NO. 20. Abstract (con't).

presented in this report. The rules will probably generalize to other classes

of algorithms.

We have also discovered a pair of techniques called "irruZizat-cn and
a1.2re ;zn. This pair of techniques (plus the other seven rules) is

shown to be powerful enough to synthesize Kung's systolic array architecture

from a specification of matrix multiplication.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAOG(IrWhwI Des ZnI*erd)

..L. . . , m n , l m m n I II . ..

Contents

-..°

Page

A bstract vi

Introduction vii

M athem atical Notation .1.. I

Section 1 Problem Description, Solution Techniques and Rules - 2

1.1 Taxonomy of the Synthesis Task 2
1.2 A Case Study: Polynomial-Time Dynamic Programming 3
1.3 Rules for Parallel Structure Synthesis 6

1.3.1 Preparatory Rules 7
1.3.1.1 Rule Al: Give Each Non-I/O Array Element its Own Processor 8
1.3.1.2 Rule A2: Assign I/O Arrays to Processors 9
1.3.1.3 Rule A3: Determine Procesor,' Inputs 10

1.3.2 Optimisation Rules 11
1.3.2.1 Rule A4: Improve HEARS clauses 11
1.3.2.2 Rule AS: Write the Individual Processors' Program... 14
1.3.2.3 Rule AS: Improve Topology of Input/Output 15
1.3.2.4 Rule A7: Create Inteiconnections in a Family to Reduce I/O Connectivity . . is

1.4 A Derivation of Fast, Parallel Array Multiplication 16
1.5 Creation of Virtual Arrays, Processor Aggregation 20

1.5.1 An Informal Description of the Techniques 20
1.5 2 Formal Definitions of Aggregation and Virtualisation 22
1.5.3 What Virtualitation Can and Cannot Accomplish 23

1.6 Practicality Considerations 23
1.6.1 Basis Change 23
1.6.2 Granularity Considerations 23

Acknowledgements to Section 1 25

Section 2 Inference Requirements Analysis and Implementation Proposal 26

2.1 Introduction 26
2.2 Data Flow Analysis 27
2.3 Reducing Processor Interconnection Degree 29

2.3.1 Problem Statement 29
2.3.2 Example: 30
2.3.3 Remarks on 'General Theorem-Proving Approach' 31
2.3.4 Heuristic Constraints 32
2.3.5 Example. The HEARS clauses of Example 2.3.2 have normal forms: 33
2.3.6 Linear Snowball Recognition-Reduction Procedure 33
2.3.7 Correctness and Complexity of REDUCE-HEARS Refinement 34

2.4 Conclusions 34

CONTENTS

N ote . 35

Acknowledgements to Section 2 36

References 37

Plates

Pap
Figure 1. Taxonomy of Syntheses 3
Figure 2. Specification of O(n") Dynamic Programming 4
Figure 3. Processor Interconnections 5
Figure 4. Specification of 8(n") Dynamic Programming with Explicit I/O 7
Figure S. Final Form of Main Processors Statement in P-time Dynamic Progamming Derivation. . 14
Figure 6. Interconnection Requirements for Various Architectures (tentative) 24
Figure 7. HEARS C1use (2b) 31
Figure 8. A Linear Snowball 33

//

ii

Abstract

-- 're object of our research is the codification of programming knowledge for the synthesis of
concurrent programs. This final report presents the derivation of two concurrent algorithms: dynamic
programming (for the class of problems that run in polynomial time on sequential machines) and
array multiplication. Both derived concurrent versions run in linear time. The concurrent versions
are significant and complex algorithms, though they are not new and already have been reported in
the literature. The synthesis knowledge for these derivations is embodied in seven synthesis rules,
preliminary versions of which are presented in this report. The rules will probably generalize to
other classes of algorithms but we have not explored that issue yet.

We have also discovered a pair of techniques called virtualization and aggregation. This pair of
techniques (plus the other seven rules) is shown to be powerful enough to synthesize Kung's systolic
array architecture [Kung-76] from a specification of matrix multiplica 7i

iv
k , --

Introduction

In this paper we describe methods for synthesizing parallel structures from concise, very high level
specifcations of algorithms. We use the very high level language, V, which can expre.s both programs
and program transformation rules. In order to allow for reasoning about concurrency, we have
defined hnguage constructs to express parallel structures that solve a class of problems. In these
problems the number of processors is a nonconstant polynomial in some measure of the problem
size. We then developed rules, or abstract input/output specifications, that transform specifications
of sequential algorithms written in V into parallel structures that accomplish the same tasks. We
have coded some of thew. in V.

First, rules operate on specifications by identifying processing that can be perform-d concurrently on
distinct elements of arrays that describe either the problem, its solution, or some in',ermediate results.
They then add specifications of multiple processors, each with responsibility for a portion of the input
data, anc a specification of the interactions among the processors. Next, other rules r, Avu e the degree
of interconnection between the processors whenever that degree is not asymptotically constant but is
polynomial in the size of the problem. We apply these rules to a subclass of dynamic programming
specifications and to a specification of matrix multiplication, and have derived asymptotically fast,
sparsely interconnected networks.

We have also developed techniques to create Kung's systolic array parallel structure from a
specification of matrix multiplication. We have identified and formalized a powerful pair of tech-
niques, which we call virtualizaLion and aggrcgation, for producing certain parallel structures that
are often complex (and generally recognized as 'clever*), given only high level specifications.

Intuitirely, virtualization is the addition of one or more dimensions to an array, turning each single
element into a column (or plane or hyperplane) that contains the partial resufts of the computation
of that element. For example, if A,j is computed using a single enumeration, then virtualisation
would produce a three dimensional array, say A', and A,,, would contain the kt partial result
of this enumeration. Virtualizations we have studied reduce the computation per array element to
0(1).

Also intuitively, aggregation is the grouping together of processors, each of which does a small
amount of work, into groups of processors, each represented by a single processor. Each processor
does all of the work that any processor in its original group did, but this can still be done quickly
because each of the processors in the original group had a small amount of work to do, and no two
processors had to do their work at overlapping times. There exist an enormous number of ways to
group processors, but we will use only simple ones.

'3J

Mathematical Notation

1' number of processors used

or Pj (where B is any letter) a vector of bi, I < i < u for some lower limit I and upper
limit u. Where I and u are particularly important and nori-obvious, (bj.., b.)
(or (bg} where L=u) may be used.

the concatenation of the vectors, I and 3

ill the length of the vector 7

(M... u)) the ordered sequence (not set) of integers from I to u, inclu-,ive

n n will always be used to denote some measure of the size of a problem to be
solved by an algorithm or a parallel structure.

#(set) cardinality of the set

9(g(n)) Order g(n) where precisely known. This means that g(n) is (within a constant
factor) the best estimate of whatever is being measured as n increases. Formally,
f(n)=O(g(n)) is defined as

3 constants c, c', c"where n > c * c'g(n) <_ f(z) :_ c"g(n)

f(n) is called the asymptotic behavior of g or g(n)

Section I

Problem Description, Solution Techniques and Rules

by
Richard M. King
Kestrel Institute

October 1982

We have been studying the derivation of parallel computation structures which achieve an asymptotic
improvement in the computation time, as compared with the best known sequential algorithm. To
achieve this the number or processors in use must grow with the size of the problem. NVe will be
interested in cases where P > 8(n), because these offer the greatest opportunities for sharing the
work among a large number of processors.

Algorithms whose asymptotic running time is 0(ni) for i > 1 often use an internal aggregated data
structure whose size is 0(n.') for some 1 < j :5 i. We try to create parallelism by assigning a
processor to each element of the aggregated data structure. The structures most important in this
work are sets, arrays of various dimensionality, and stacks. This paper considers arrays. Data
structure selection for an algorithm dependent on stacks or sets can produce arrays, so this choice
is not overly restrictive or unnatural. Another important issue in parallel algorithm synthesis is
the connectivity of the resulting multiprocessor net. This is especially important because we seek
asymptotic growth in the number of processors, so too rich a connectivity may result in a collection
of processors and interconnections that would be impossible to fabricate economically. We thus give
attention to reducing connectivity.

In this paper the term parallel structure, or simply structure, will be used to denote a program
designed for a B(n) or larger collection of processors plus a specification of how they should be
interconnected.

J1.1 Taxonomy of the Synthesis Task

Figure 1 is a taxonomy of the various states that a synthesis process can be in, together with the
possible synthesis steps. We Will Use such phrases as 'a Class D synthesis' throughout this document.
In the taxonomy, structures to the right are more desirable than the ones on the left, because they
require fewer connections between processors. Each labelled arc represents a possible synthesis step.

It might seem that every Class D synthesis (for example) is harder than any Class A or Class B
synthesis, since the result of a Class D synthesis is the same as the result of a Class A followed by
a Class B synthesis. This is not true in general, although it usually holds. Some specifications are
especially suitable for some of the 'higher* syntheses. One example is that a specification including
backtracking is often more easily synthesized into a tree-structured parallel structure than any other.

1,2. A CASM STUDY: POLYNOMIAL-TIMa DYNAMIC PROGRAMMING

abstract randomly lattice - r tree
specification intercommunicating intercommunicating structurearallel parallel

s ructure structure 1-01

Figure 1. Taxonomy of Syntheses

\Ve concentrate on Class D synthesis in this report because it represents an advance on our prior
work on Class A synthesis ([GCP-811).

§1 2 A Case Study: Polynomial-Time Dynamic Programming

"0.e have examined a class of Polynomial time (P-time) dynamic programming algorithms for which
it is possible to synthesize an optimal parallel scheme. The synthesis uses rules displayed in 1 1.3, and
inference capabilities which Kestrel proposes to develop in 1983, described in (Brown-821. Abstractly
programmed algorithms in this class include the Cocke-Younger-Kasami parsing algorithm for a
fixed. possibly ambiguous Chomsky Normal Form grammer, described in AhuUll-721; the Optimal
Binary Search Tree algorithm, described in [Knuth-73]; and Optimal Multiple Matrix Multiplication,
described in [AHU-744. All of the algorithms fit into the following scheme.

Each algorithm generates the 'solution* to a problem whose input is a sequence 9 of n items by
using a dynamic programming technique. This technique generates a solution for a sequence of items
by combining solutions for contiguous subsequences. The solution V(R/) for a sequence R of length
m is found by:

I. Generating the m-1 possible partitions of k into contiguous subsequences I and I such that
71jJ1=k;

2. Forming for each partition a partial solution for 7113 by applying a function F to V(7) and V(J);

3. Obtaining V(113) by combining (using a binary operation 0) all of the partial solutions. This
is expressed formally below:

V(R) 0 F(V(7), V(1))
7,7:711.7,R"

In order to obtain the following parallel structure that runs in time 0(n), two conditions must liold:

I Both OD(z, y) and F(z, yt) must take constant time,

• (D must be both commutative and associative. This allows F(V(7), V(j)) values to be included in
the running ()-totl in any order they become available.

These conditions are met by a sizable class of algorithms, e.g. the algorithms mentioned above. The
algorithm generates the solution V(3) for the original problem 3 of length n. The process starts
with V((si)) for each a, E 9, then generates solutions for subsequences of length 2, 3, and so on, up
to n. We give below two dynamic programming algorithms that fit into this scheme.

The Cocke-Younger-Kasami algorithm parses a sequence of terminal symbols according to a fixed
grammar, G, in Chomsky Normal Form. This form specifies that each production rule in the
grammar is either of the form N -* t for nonterminal N and terminal t, or N - PQ for nonterminals
N, P, and Q. In this parsing algorithm, each problem is a sequence of terminal symbols, T, and
the solution V(T) is the set of nonterminal symbols that derive 1. Let the initial terminal sequence
be (t .. t,). Then V((t,)) are those nonterminals N for which there is a production rule in the
grammar of the form N -- ti. Given two sequences of terminals A and D, the nonterminals that

4 1. PROBLaw DISCRIPTION, SOLUTzON TEcHNIQUnS AND RULXS

produce AiR include those nonterminals N for which there is a rule N - PQ where PE V(A) &nd

Y E V(D). The nonterminals that produce a sequence 3 are obtained by dividing the sequence
into two subsequences in all possible ways and taking the union of the results. In our formalism,

F(V(.l), V(T))={NI[N -. PQ E G A PE V(3) A Q E V(T))

and

(D is the Union operation, which is indeed associative and commutative.

Another example of a dynamic programming algorithm fitting our scheme is finding the complexity
of the optimal grouping to multiply a given sequence (,W', M2 ... M,,) of matrices. Since matrix
multiplication is associative, multiplying the matrices in different groupings produces the same result
matrix, but different groupings may have different execution efficiencies. If M is a p x q matrix,
and N is a q X r matrix, then the product M X N will be a p X r matrix, and the multiplication
will execute in time proportional to pqr (if a simple matrix multiplication algorithm is used).

This problem fits into the scheme presented above in the following fashion. The 'solution' for each
matrix subsequence V((M, ... MI)) is a triple (p,q, c): p is the row size of Mt; q the column size of
.W4j (since multiplication using any grouping of (Mi... M6) results in a p X q matrix) and c is the
optimal execution cost for computing MJf X ... X Mi-. The F for this algorithm is defined below-

F((p,,qC,),(P2,q2, CA)) = (pl,q2, cI + c2 + plqlq 2)

for this algorithm returns the triple with the minimum cost element. (Since only the costs can
differ among triples, 0)'s choice is arbitrary if the costs happen to be the same.) The minimum
operation is associative and commutative.

A high-level specification of the dynamic programming algorithm is presented below. A subsequence
can be represented by its length and where it begins, The array A used below contains solutions to
subsequences: the element A., contains V((i, . ., -.)), where 7 is the initial sequence. The
complexity of each 'executable' statement is presented at the right.

The algorithm specification is as follows:

ARRAY Atm, 1 < m< n, 1 <1 I< n-n +1
INPUT ARRAY v , < I < n

ENUMERATE IE((I ... n)) do #(I)

At, I - vi 0(n)

ENUMERATE m((2... n)) do $(1)

ENUMERATE 1E{1... n-m + 1} do 0(n)
A4,,,- 0 F(Alk, Al+k,,n-k) 0(n')

JiE{t...m-1)

Figure 2. Specification of 0(n 3) Dynamic Programming

A cost of 9(n 3) is assigned to the evaluations of F and (D because it is given that a single evaluation
of both F and 0 takes constant time.

The time complexity of the specified algorithm executed on a sequential machine is indeed 8(n)

However, it is possible to implement the specification on a two-dimensional array of 6(n
2

) processors
and the resulting algorithm will run in 0(n) time. The memory size of each processor is 6(n). Below

A trick is available for Optimal Binary Search Ttee. This trick Involves bounding k In Figure 2 more narrowly
than (I. 'n-1). Thi trick teducee the algorithm's running time to #(n'), but It does not ge!ntrallse to the other
algorithms. We know of no analog to this trick for parallel structuree.

1,2. A CASE STUDY: POLYNOMLAL-TIMs DYNAMIC PROGRAMMING S

we describe the operation of the structure, and then prove that it is a O(n) algorithm. This algorithm
has been reported in the literature [GKT-791.

The network of processors is displayed in Figure 3. Observe that P, ,, is connected to PI,m-.I and
PI-,_-. Each processor PI,, will compute the value of AI,,. To do this it needs two streams of
mnfor'nat.on: A1i, and Ak,.,-, where k < m. These streams of data come respectively over wires
frum proc-essors P.,,,-I and Pl+lm--. Each processor Pl,,, (except Pt,,,) will send every A-value
received from P1,_ to P,.,+ and from PI+1.-_1 to P- ,,+ as soon as P.,. gets it. Each
processor will also compute F-values and merge them into a rnning 0-total as soon as it gets the
A-values necessary.

P1. 1 P 2, 1 P 3, 1 P 4, 1

P1 ,2 P3 ,2 P3,.2

P1 ,3 P 2,3

Figure 3. Processor Interconnections

At first glance, it might appear that this algorithm has time complexity 6(n 2). Each processor needs
to receive O(n) A-values from each of its incoming wires; it must at some time perform O(n) worth of
computation on the data received before it sends its result on each of its outgoing wires. However,
a careful timing argument shows that an execution time of $(n) can be achieved.

Definition 1.1. Within Pl,,, for any k where 1 k < m, A,t and Ai+k,,m- are called a

complementary pair of A-values.

Processor PI,, will apply F to each complementary pair of A-values.

The nex lemma shows that each processor P1,, receives all 2m-2 values it needs, though it waits
6(m) for its first complementary pair, ALr,.,/21 and Ai+ m 2,,-.m/2J_ .

Lemma 1.2. Each proceisor PI.,, where 1 < m > 1 receives the values A,,,, where 1 < m' < m
Lind (separately) A,+.-.,,, where m' < m in order of increasing mI.

'roof: By induction ou m. Clearly this is true for Pi, 2 , which receives only one value on each
of its incoming wires. Now suppose it is true for P1,.,_ 1 and Pz+i,,--. Then PI,, will receive
A-values in the proper order from P,.y-t 1 and PI+1m-. through m'=m-2, following which it
receives A4,._I and A,+i,.- from those processors. But the latter two A-elements are just those
required to preserve the sequences. I

system startup T=O, and after z units of time T=%. The time unit satisfies the first condition of
the fcllowing lemma,

Lemma 1.3. If all of the following conditions are met:

I All of the following takes processor PI,m no more than one unit of time: receiving two values, one
each from P1m-_ and PI+,m-1; sending these values on to Pl,,-+1 and PI--,-.+s; applying the
function F twice to two complementary pairs of A-values it all values are available; and merging
the resulting value into a running 0-total.

l The A-ualues come into P I ,, in the order indicated by Lemma 1.2.

1. Pvtoisam DascRIPTION, SOLUTioN TZCMN1QV!us AND RULKS

v, Each procesar Ft,, sends values received from P1,,_... reap P1_,1,,_..1 toPif.. reap. P1 ,,, 4
no~ iater than one time unit after receipt.

A .t T=-O p-ocesacr P1,1 transmis A1, 1.

then P,,,,, vvtll ccrnpute At,._ no later than T=2m.

Proof: Dv Byduction. Pt~1 is initialized to know A1,1. Now sL.Iose the lemma i! true for in, < m
and suppose T=2m" for some mn" < rn. First prove a subt emma, that at this tim~e Pl,, will have
included at !east maxCO, 2(m"-! m/21)) F-values in its running 0D-total. This su'~lemma is proven
by iridu'-tion on m"-r m/21.

When reading the proof of the sublemma, keep in mind that the 'life' of a processor P1,, is divided
into thre~e epochs:

1. Whier T < m, the processor may have miceived no A-values.

2. Wheni m < T < I im, the processu;r will have received at least T-m A-valiues from each of
its inpu' !ines. Since the first half of the A-values from each inbound wire form complementary
pairs wizh the last half of the values from the other inbound wire, P1,, may not have been able
to perform any calculations of any F-values yet.

3. WNhen T- im, the processor will have received at least half (more accurately, at least T.-m) of
the values from each inbound wire. During each unit interval, it will receive one A-value from
each inbound wire, which will 'match" with some value that was stored from the other wire
during epoch 2. Two F-calcuations will he possible - one for each of the just-received inbound
data.

If in"-- >n/2,=O the s'ablemma requires nothing. If mn"-m/21 > 0, consider the situation
mD ,'mI 21 before T=2m". All processors Pz,, and P1 ~j*j, where j 5 Im/21 -- m"-,'m/21 will
have completed 4heir work and their answers will have had time to reach PIr., Thus at least
2(in"- m/21) pairs of A-values will have arrived. Since (by induction on m"-frn/2]) two time
units ago 2(m"-fm/21)-2 F-values had already been merged into the running 09-total there is
plenty of time to merge two new F-values into the running 0-total, completing the induction step
of the sublc'.ma.

Lemma 1.3 follows immediately from the sublemma and the observation that the merging of rn-1
F-values into the running 0D-total in P,., constitutes a calculation of At,,..

Theorem 1.4. The time to compute A,,. is O(n).

Proof: Immediate from Lemma 1.3.

In t~e next ;ection vie will show how this parallel structure can be derived from the specification in
Figure 2.

51.3 Rules for Parallel Structure Synthesis

Rules for the Class A synthesis task appear elsewhere (see [GCP-81]). This report describes the task
of synthesis of parallel structures for arrays of processors in which the interconnections describe a
k-dimensional lattice for some k, i.e. a Class D synthesis task.

As examples of rule application and a demonstration of the rules' effectiveness, we apply each rule to
the P-time dynamic programming specifications. We will repeat that specification here, augmented

1 3 RULIS rOR PARALLSL STaICuaS SYNTnesis

with output array descriptions.

(P.1) ARRAY A , < m < n, 1 < i < n- n IL

INPUT ARRAY vu, 1 < I < n

OUTPUT ARRAY 0

ENUMERATE lE((1 . n)) do 9(1)

A4,1 - vi 0(n)

ENUMERATE m E((2... n)) do 8(1)

ENUMERATE IE{1 ... n-rn 4 1} do 0(n)

A0.,, " F(Ai.k,A+j.,,) 9(n s)
XE{1- m-0}

0 4- A,,, 9(1)

Figure 4. Specification of 0(n3) Dynamic Programming with Explicit I/0

1.3.1 Preparatory Rules

The problems now amenable to Class D synthesis have internal arrays of storage, and the requirement
is to fill in the array by computing a value for each element. Our strategy will be to assign a processor
t . each element of the array. This rule declares a processor for each element of the main array in the

problem, and composes a single enumerated PROCESSORS statement. This statement has several
clauses: the processors definition clause, the HAS clause, the HEARS clause(s), and the USES
clause(s). Any part of the PROCESSORS statement except the processors definition clause can be
made conditional. An example of a PROCESSORS statement is shown below:

PROCESSORS P 1,,, I < m < n, 1 < I < n-rn + 1

HAS A,.,

if m=1 then USES vi, HEARS Q

If 2 < m < n then

USES Aj.j, i < k < m

USES A,+ - < k < m

HEARS P,,-

HEARS P 1+ ,m-I

This statement means all of the following:

m A family of processors exists. The family name is P. Each member of the family is named by
two indices, and any member P.,,, exists if 1 < m < n A 1 < I < n-m + 1. The value n is

an externally defined constant value (for any instance of the problem) defining the problem sie.
This PROCESSORS statement actually declares some facts about every processor in the family.

a- Each element, Pj.,,, of this family is responsible for computing the value of (i.e. HAS) A4,m,. A is
an array declared elsewhere in the specification that contains the PROCESSORS statement.

- If P1.1 is defined it needs v, to compute its HAS values, and it expects to get these values from
(i.e. HEARS) the (only) processor in the Q family.

m If PI.m is defined and 2 < m < n, then Pi,,,, needs the values of A,k for any k, I < k < m-1.
It also needs Ai+.,,- for any k in that range. It expects to get these values from processors
in the P family, namely Pj.,.-. and Pi+lm-,. The scope of the bound variables list (in this
case, 'I, m") is the entire PROCESSORS statement. Two PROCESSORS statements must have
distinct processor names (in this case, ").

1. PQOLzm DuscaipIoN, SOLUTIoN TCHNIQuas AND RULBS

1.3.1.1 Rule Al: Give Each Non-I/O Array Element its Own Processor

By our conventions, the portion before the ' - " is the antecedent and the rest is the conse-
quent. Variables tree in the antecedent are implicitly existentially quantified and the scope of this
quanutification is the entire rule. Variables free only in the consequent are universally quantified (but
this is rare). A rule is said to apply if the antecedent is true; when this happens the semantics of
the rule is to make the consequent true. It is explicitly permissible for the consequent to make the
antecedent no longer true.

rule MAKE-PSs ('*) TRANSFORM

X STATEMENT

AXE ".STATEMENTS
A X:'ARRAY NAMEBOUND ENUMERS'
A Y=(GENSYM 'PROC)
A Z:'PROCESSORS YDOUND ENUMERS HAS NAMEBoUND'

Z E *'.STATEMENTS
of this quantification is the entire rule. Variables free only in the

MAKE-PSs applied to (P.1) binds as follows:

bindings:

"=((entire specification))

X='ARRAY Aj,m, 1 < m _ n, 1 < I < n-rn+ 1'
NAME='A'

BOUND='I, m'
ENUMERS='l < m < n, 1 < I < n-in + 1'

Z='PROCESSORS Pl,, 1 < m < nI << n-m+ 1
HAS A4,,n'

obtaining

(P.2) ARRAY A,m, I < m < n, 1 < l < n-n + 1

PROCESSORS Pi,.,, 1 < rn < n, 1 < I < n-m +I HAS Aim,
INPUT ARRAY ul, 1 < I < n

OUTPUT ARRAY 0

ENUMERATE IE((1 ... n)) do 9(1)

A4,, +- vt 0(n)
ENUMERATE mE((2 ... n)) do $(1)

ENL MERATE IE1 ... n-rn + 1} do 0(n)

Al.,, () F(AL,t, Al+k,,._) 0(n3)
4 E~l ... M- 1)

o - Al, 6(1)

as the new state of the database.

1.3. RULIs FOR PARALLIL STRUCTURS SYNTHS3sl 9

1.3.1.2 Rule A2: Assign 1/0 Arrays to Processors

This rule assigns a single processor to each input or output array. The reason only a single processor

is assigned is that it is assumed that input values will reside in a single entity, such as a tape drive.

rule MAKE-IOPSa (**) TRANSFORM

X.STATEMENT

A X E **.STATEMENTS

A X:'IO ARRAY NAMEBOUND ENUMERS'

A (IO='INPUT V IO='OUTPUT)

A Y=(GENSYM 'PROC)

A Z:IPROCESSORS Y HAS NAMEoUNO ENUMERS'

Z E **.STATEMENTS

Rules MAKE-PS. and MAKE-IOPS# make PROCESSORS statements that do not have USES

and HEARS clauses yet. The next rule fills in those clauses, and subscquent rules improve them.

Rule WAKE-IOPSs applies for two sets of bindings:

**=((entire specification)) **=((entire specification))

X='OUTPUT ARRAY 0' X='INPUT ARRAY vi, 1 < I < n'

IO='OUTPUT IO1=INPUT

NAME=O NAME=u

BOUND=(empty string) BOUND='I'

ENUMERS=(empty string) ENUMERS='l < I < n'

Y=R Y=Q

Z='PROCESSORS R Z='PROCESSORS R

HAS O' HASv v, 1 < I < n'

resulting in

(P.3) ARRAY A4,,n, 1< m < n, I< I < n-m +I

PROCESSORS PIm, 1 < m < n, 1 < I < n-m + I HAS At,,

INPUT ARRAY vi, 1 < I < n

I PROCESSORS Q HAS iji, 1 < I < n

OUTPUT ARRAY 0

I PROCESSORS R HAS 0

ENUMERATE I E ((... n)) do 9(1)

(P.3a) At,, -- 9 0(n)

ENUMERATE m E((2... n)) do 8(1)

ENUMERATE IE{1 ... n-m + 1} do 8(n)

(P.3b) At,. '- F(A,,,A4+,,.-h) 0(n3)
kE(1...m-I)

(P.3c) 0 -- A,,. 9(1)

So far, all rule application can be done in a straightforward manner, without inference.

0 1. PROBLza D&SCRIPION, SOLUTION TzCmItIQU5S AND RULES

1.3.1.3 Rule A3: Determine Processors' Inputs

We need rules to describe the connections between processors and the data that processors need to
produce results. This rule is very conservative - it determines what array values each processor P'
needs, and it specifies a direct connection from the processors holding those vwlues to P'. The USES
clause describes the values that a processor needs; the HEARS clause describes the processors that
have (HAS) these values.

To determine this, consider the innermost loop which assigns values to array elements indexed by
non-region-constants. Note that the form of the rule shown below evidences a need for elaborate
flow analysis. Non-constant array index expressions are used as processor indices. The indices
for those array elements whose values can affect the assigned value comprise the index expressions
for the USES and HEARS sets. A reference at the same loop level will normally generate USES
and HEARS clauses with null enumerations. A reference contained in a deeper loop will normally
generate instances of such clauses with inherited enumerators from the loops.

rule MAKE-USES-HEARS (**) TRANSFORM
*':'PROCESSORS PDCLpgv PENUMER HAS ANAMEENDEx"

A CB=**.CONTAINING-BLOCK

A X=(INNER-LOOP-THAT-DEFINES ANAME CB)

A Y E (ARRAY-REFERENCES-AFFECTING X)
A Z=(EFFECTIVE-ENUMERATOR-OF Y X)

A W.CONDITIONS =CB.CONDITIONS U(INFERRED-CONDITIONS X)

A W.CLASS =USES-CLAUSE
A W.ARG ='ANAME

(REL.BV PRV X.DEF-OF .lNDEX.EXPR Y Z)
(RELENUMER PBV X.DEF-OF .LNDEX-EXPR Y Z)'

A Q.CONDITIONS -=CB.CONDITIONS U(INFERRED-CONDITIONS X)

A Q.CLASS =HEARS-CLAUSE

A HISBV=ANAME.PROCSTMT .PlIOC-BV-OF

A Q.ARG ='ANAME.PROC.OF
(REL-BV HISBV

X.DEF-OF .INDEX-EXPR Y Z)
(RELENUMER HISBV X.DEF.OF .INDEX.EXPR Y Z)'

WE ".clauses

A Q E *.clauses

The INNER-LOOP-THAT-DEFINES function finds an innermost locality where an element from the
argument array is defined (not merely used). The ARRAY-REFERENCES.AFFECTING function
returns a set of all points in the program where an array is referenced and the value returned can
affect the results of its operand, a program point. The EFFECTIVE-ENUMERATOR-OF function
determines what (possibly implicit) enumerators its first argument (an array reference) is controlled
by, beyond the enumerators that control its second argument (an array definition in this case).

The map, z.CONDITIONS, allows any node z to be placed under the influence of conditions (an If
clause). INFERRED-CONDITIONS is a function that produces an If clause that specifies exactly
those conditions that must be true for the point representing the argument to be reached (a form of
assertion propagation).

REL-BV and RELENUMER give a piece of text that respectively will serve as a bound variable
and an enumerator for the fragment enumerated by the fourth argument to be valid for the third

1.3. Ruz.as ,o PARALLZL STRUCTfUR SYNTHISS 11

argument in the context of the second argument, using the bound variables of the first argument.
This would be the bound variables of the fourth argument unless there is a variable name clash.

This modifies the first PROCESSORS statement, which becomes

PROCESSORS Pj, , 1 < m < n, 1 < I < n- + 1
HAS A4,m

If =1 then USES ul, HEARSQ

Application to the assignment to Ai,m in (P.3b) produces

PROCESSORS Pl,., 1 < n < n, < I < n-m + 1

HAS A4.m

It m= 1 then USES vl, HEARS Q
if2 < mt< nthen

I USES Al,,, I < k < m
USES Ai+k,,._, 1 < k < m

HEARS PZ, I < k < m

HEARS P-h,,,-k, 1 < k < m

Finally, apply MAKE-USES-HEARS one last time, to the null 'enumeration", (P.3c), that sends
the output value to the output 'array', 0. This forces us to modify R's PROCESSORS statement
as follows:

PROCESSORS R HAS 0

1 USES A1,,. HEARS P,.,

This statement is in its final form.

The applications of MAKE-USES-HEARS require flow analysis and some ability to reason about
enumeration (to construct If clauses).

1.3.2 Optimization Rules

The rest of the rules described in this section will transform the simplest parallel structures into
more efficient ones. They do this by detecting and removing redundant interconnections.

1.3.2.1 Rule A4: Improve HEARS clauses

It may be that a HEARS clause of a PROCESSORS statement requires each processor to be con-
nected to more than one other processor. This is undesirable, because the number of interconnections
in the whole collection of processors would grow faster than the number of processors, and the cost
of interconnections would exceed the cost of processors for sufficiently large problems. This would,
in turn, decrease the size of the largest problem that could be handled by a given parallel structure.

However, often it is not necessary for each processor to be connected to all other processors whose
values it needs. If processor P. needs values from processors P& and P,, but Pb needs a value from
processor FP, it may not be necessary for P. to be connected to Pe. P. must be connected to P6,
but P6 will be able to get the value that P. wants from P., so it (Pb) can pass that datum along.

II 1. PROBL&) DseCaCRToN. SOLUTION TSCHNIQUZS AND RULIS

This form of this observation only secures a constant factor reduction in the number of intercon-
nections (in this case, from two to one), but it is possible to do better by extendiug the principle.
Suppose, for example, that a structure includes a family of processors Pi for 1 < i < n. Further
suppose that Vi,j where j < i, Pi needs values from P.. In this case, Pi+ will need all the values
Pi needs, plus the value in Pi itself.

Basic Observation 1.5. In a case such as this Pj is capable of supplying all of the information that
P3 +I needs, so it is possible to modify the structure to replace the 0(n) connections required by this
REARS clause by a single connection.

Definition 1.6. In a parallel structure, a family of processors is the set of processors defined by a
single PROCESSORS statement when enumerated over the PROCESSORS clause's enumerator.
That family is generated by that PROCESSORS statement.

Definition 1.7. The set of processors in a processor Pa's family HEARd by P. due to a HEARS
clause Ho will be written Ho(P.).

Definition 1.8. Consider Ho(P.) and Ho(Pb). Suppose that each is a subset of the same family as
P. and Pt (which are in the same family because they both have the same HEARS clause, Ho). The
interconnections defined by Ho telescope if these sets Mo(P.) and Ho(Pb) either are disjoint or one
strictly contains the other, for any choice of P. and P, in the family. We also say that Ho telescopes.
11 VP .p, E f.,", :[0 C Ho(P.) C Ho(P) = 3p. E ,v :[Ho(P) U(P.} Ho(P.)! then Ho snowballs.

The notion of a USES clause telescoping is defined similarly. A partition is inducel by a telescoping
clause co if two processors are in the same partition whenever the sets defined by co overlap.

Theorem 1.9. If a HEARS clause Ho snowballs, it can be replaced by another HEARS clause that
only specifies input from a single processor.

Proof: Consider the family of processors described by the PROCESSORS statement that contains
the HEARS clause. Consider also the induced partition I.

If the cardinality of an equivalence class E E 1 is (say) c, then VP. E E:IHo(P)I < c. (No processor
can HEAR itself because it would never be able to complete its calculation if it needed its own result
to do so.) Since V z, y:z 34 y =* IHo(P)I -IHo(Py)%, and since {0. ... c-1}=c, the processors in E
can be completely ordered by the cardinalities of their HEARd sets. By the basic observation and
the snowballing property, each processor can get the information that Ho requires from the processor
that is its predecessor in this ordering. I

Definition 1.10. We call replacing a HEARS clause, as in the previous theorem, reducing the clause.

We expect to be able to prove the following result; it "falls out* of a generalisation of Theorem 1.5
for which we are working out a rigorous proof.

Conjecture 1.11. Reducing a snowballing HEARS clause will produce a parallel structure whose
asymptotic speed is the same as the speed of the original structure.

We can now state this rule in English as follows: 'If a HEARS clause snowballs then reduce it*, and
more formally as follows:

1.3. RULas roR PARALLEL STRUCTURN S'rNxmIS I

rule REDUCE-HEARS (**) TRANSFORM
.'PROCESSORS PNAMEPDV PENUMER ... If CONDI then

HEARS PNAMEHev

HENUMER...'
A PENUMER.CLASS =ENUMERS
A HENUMER.CLASS ==ENUMERS

A COND1.CLASS =PREDICATE

A COND2.CLASS =PREDICATE

A COND1.FREE-VARS g PDV

A COND2.FREE-VARS C PDV

A SET1=(3OUNDBY PDV (1) IiBV HEN UMER)

A SETla=(BOUNDBY PDV (2) HBV HENUMER)

A PROC1=(BOUNDBY PDV (1) PDV 0)
A SET2=(BOUNDBY PDV NIL HBV HENUMER)

A PROC2=(BOUNDBY PDV NIL PDV 0)
A PROCh=(BOUNDBY PDV NIL HEXPR 0)

A (THEO REM
((SET In SETla) E{0 SET1 SETlo}

A ((0 C SETi C SETla A CONDl) = SETl U PRO C1=SET2)

A (CONDI A COND2 t* SET1 u PROCh=SET2)))

.. : 'PROCESSORS PNAMEPDV PEN UMER ...

HEARS PNAMEHZXPR ..

when this rule is applied to the current state, the bindings will be as follows:

"='PROCESSORS Pgmn, 1: m < n, 1 < I< n-rn + 1

HEARS PI+k rn-k, I < k < rn-I...'
PNAME='P'

PDV=', mW
PENUMER='l < m < n, 1 < I < n-rn + 1'

HBV='l + k, rn-k'
HENUMER='l <5k <rn-i'

SET1={(((l + k, mi-k)):1 < k < ml-1}
SETla=((!2 + k, M 2 -k)):1 !5 k < M 2 -1)

P??OCI=((1, Mi)

SET2= (((1 + k, m-k)):1 < k < mn-11

PROC2={((l, m))}

PROCh={((l + 1, rn-1)))
HEX PR='(((+ 1, rn-i1))'
CONDI='2 < m < n'

COND2=true

THEOREM is a function whose argument is a symbolic set-theoretic expression whose atomic terms
are set expressions. These expressions are Principally created by the BOUNDIIY function, whose

14 1. PROeLgm DuscuzwvsoN, SOLUITom TSCHNIRUSS AND RuLss

inputs are the bound variables list of the processor name id, an identity parameter, the form that
defines the array references that comprise the array definition, and the enumerator (if any) for the
array reference.

PDV will take values of sequences of bound variables, and HBV will be sequences of expressions.

BO' NDBY is a quaternary function which returns an object that acts like a set-valued expression
with free variables. Its four arguments are:

I, A sequence of variable names, called VNS.

I An identification index, called IIX.

I A sequence of expressions, called EXS.

• A set of enumeration operators, called EOPS.

I gave each argument a name here for easy reference. BOUNDBY composes the object to return
by first associating a "subscripted" new free variable (not to be confused with an array element
reference) with each variable in VNS. The subscript is MIC (and if IDC is NIL there is no subscript).
Every occurrence of an element of VNS in EXS or EOPS is also subscripted.

In the BOUNDBY expression defining PROCh, HEXPR (implicitly existentially quantified) is
constrained by the THEOREM and PROCh= ... expressions.

Some bounds on the range of possible values for HEXPR are necessary. Something like

Vz 3 Y:z E HEXPR =* z E{'y', 'Li 1',y-'} A Y E PDV

would serve.

COND2 is also constrained by the theorems that can be proven.

This rule reduces the HEARS clauses from the large PROCESSORS statement of the current state
to

HEARS PI,,-

HEARS Pl+Z.n-i

The resulting PROCESSORS statement is

PROCESSORS Pmp 1 m < n, < < n-m-j- 1

HAS A ,,,.

If m=1 then USES ul, HEARS Q
If2_: m < n then

USES A.h, 1 < k < mn
USES A4+,m._,1 < k < M

HEARS Pon,-1
HEARS P1+ 1m-I

Figure S. Final Form of Main Processors Statement in P-time Dynamic Programming Derivation

1.3.2.2 Rule AS: Write the Individual Processors' Programs

The general idea of the rule is that the first rule isolated the deepest enumeration in the specification
which assigned a value to an array element, and built the beginnings of a parallel structure where

1. RULES FO
R

PARALLEL STRUCTURE SYNTHISIS

each array element within the domain of that enumeration had its own private processor. Since the
enumeration in time has been replaced by an enumeration in space, the layers of enumeration that
get us to the point which induces the creation of the first parallel structure can be stripped away.

A technical note is that the enumerations can only be completely discarded when there is no
calculation at intermediate levels. If there is such calculation, the system will have to add it to the
appropriate processors when it strips away the layers of enumeration that include such calculation
as well as the deeper enumeration. This does not make the asymptotic behavior of the parallel
structure any slower except when the calculations include enumerations. When this is the case, it
might be possible to respecify the problem to have separate copies of the array enumerated in the
calculation for each cell of the target array. This would require an array whose dimension is the
sum of the dimensionalities of the two arrays.

This rule is expressed in English as follows: 'Supply each processor specified by a PROCESSORS
statement with a copy of those enumerations from the original program that occurred within the
region that included the assignment to array elements that generated that PROCESSORS statement.
The references to array elements are replaced by associative lookups from the table of information
that the processor has HEARd. The outer enumerations are stripped from the program, and uses of
the variables that were bound in these outer enumerations are replacec "y constants reflecting the
processor's ID.*

The derivation of the P-time dynamic programming parallel structure is almost complete. It remains
only to reduce the depth of enumeration Lo the single level implicit in the segment,

. (D F(A,,Aj-+-,.)

Rule A5 does this. The complete parallel structure that results is as follows:

ARRAY A4,., 1 < n < n, 1 < I < n-n + 1

PROCFSSORS Pi,,., 1 < M < n, 1 < I < n-n + 1

HAS Aj,,

If n=1 then USES vi, HEARS Q
If2< m < n then USES A, 1 < k < m

USES A1+ r-,1 < k < m

HEARS P,r-i

HEARS P+1 ,,-,-
ARRAY v1, 1 < I < n LNPUT

PROCESSORS Q HAS v,, 1 < I < n

OUTPUT ARRAY o

PROCESSORS R HAS 0
(include if r=l): At, v #(1)

(include if m> 1): A.,, " F(A4,k, Ai+k,,n-hk) 0(n)
k E t ...,n-t

(include if 1=1 A m=n): 0 -- A1,,. 9(1)

1.3.2.3 Rule A: Improve Topology of Input/Output

We discovered that the rules described so far will produce a parallel structure in which every
processor is directly connected to the input and output processors when given a specification of
array multiplication. Only one I/O processor is created per I/O array, and for many problems,

16 1. PROBLSM DasCRIPTION, SOLUTION TrCHNIQUBS AND RULEs

including array multiplication, it is necessary to get some input or output from/to every processor.
(P-time dynamic programming is an exception, in which only 0(n) of the 0(n

2) processors receive
input values and the output is only a single value.)

We therefore conceived another rule to attempt to reduce the excessive connectivity that results

from every processor needing access to input or output.

This rule is also not yet formulated in V, but it states that if the following conditions are met:

m the number of processors n, in a family that receives input from or sends output to a given
processor is asymptotically unacceptable, and

1 there is a HEARS clause He such that the number of processors that do not HEAR any processor
using He clause (if input) or that are not HEARd by any processor using that clause (if output)
is asymptotically less than n,,

then the I/O HEARS clauses can be reduced so that only those processors at a source (or terminus
if output) of He are directly connected to the I/O processor.

1.3.2.4 Rule A7: Create Interconnections in a Family to Reduce I/O Connectivity

Rule A6 allows the reduction of connections from/to an I/O processor where a set of interconnections
already exists to solve the 1/0-free portion of the problem. In some problems, including array
multiplication, no convenient set of interconnections exists and one must be introduced solely to
distribute I/O values. Fortunately, the rule that would do this is fairly simple to state and is
evidently implementable, given the mechanisms already required for REDUCE-HEARS.

The rule is: where a single USES clause telescopes, order the induced partition (definition 1.9) by
the processor indices and interconnect the processors in each partition with a new HEARS clause
where each processor is connected (only) to its immediate predecessor (if any) in this ordering.

51.4 A Derivation of Fast, Parallel Array Multiplication

Computer scientists have proposed many parallel schema for the array multiplication problem,
probably because it is a practically important problem and seems so obviously amenable to parallel
processing. One of the prettiest paraaiel structures is described in [KungLei-761. Kung's algorithm
multiplies an n X n array in #(n) time using 0(n 2) processors or constant size. (Kung makes the
assumption that a solution that invo ies 0(n) processors in communication with the outside world
is acceptable. This subsection follows that assumption.) The best known sequential algorithm uses
0(n 2) multiplications, but the obvious parallel structure using n1-81 processors to do the job in
linear time does not work; processors tave ,o wait for other processors and have to receive copies of
their results.

With the rules and postulated mechaaisms :or deriving information not locally obtainable from the
specifications it does not seem possit;-, to derive Kung's systolic array. It is, however, possible to

derive another parallel structure with l.near ixecution time. We added rule AT with this derivation
in mind, but do not feel that AT is contrived or impractical.

Our parallel structure is inferior to syitolic arrays because it uses more processors on a restricted
class of matrices called 'band matrices," in which all but a narrow diagonal band of the input

matrices (and therefore of the output zatrices) contains zero values.

The starting point of this derivation is 4 specification of array multiplication (we are assuming square

mom

1 4. A DIRIVATION o FAST, PARALLEL ARRAY MULTIPLICATION 17

arrays to simplify the discussion):

INPUA ARRAY Aim, 1 < n, 1 < m < n

INPUT ARRAY BI., ,1 < i n, 1 < m < n

ARRAY CI,,, 1 < < n, 1 < m < n

OUTPUT ARRAY Dl,m, I < I < n, 1 < m < n

ENUMERATE iE{1 ... n} $(1)

ENUMERATE i E{1 ... n} 0(n)C .j *- Z A i.,tBk . 0(n3)

D 4-j - C9, 0(n
2

)

The use of arrays C and D seems redundant, but its purpose is technica - our rules would not
permit us to assign multiple processors to a single array if that array were an INPUT or OUTPUT
array. Duplicating all of the arrays in this manner, to avoid all appearances of 'prejudicing the
case" of which array's parallelism would be important, would only change in the resulting parallel
structure in that each processor would be replaced by a family of three.

MAKE-PSs and MAKE-JOPSa add PROCESSORS statements,

INPUT ARRAY A4.m, I < I < n, 1 < m < n

PROCESSORS PA HAS A4,, I < I < n, 1 < m < n

INPUT ARRAY Blm, I < I < n, 1 < m < n

I PROCESSORS PB HAS B, 1 < I < n, 1 < m < n

ARRAY C,m,1 < I< n, 1 < m < n

I PROCESSORS PCt1 m, 1 <1< n,1 < m < n HAS C1 m

OUTPUT ARRAY DI, 1 <1 < n,1 < m < n

I PROCESSORS PD HAS Dim, 1 < < n, 1 < m < n

ENUMERATE i E(1 ... n} n()

ENUMERATE iE{1 ... n) 0(n)
G'i.j *- Ai,hBk,j 8(n3

)

kE{1...n}

DMj AE C t(n 2)

JWAK E-USES-H EARS completes the rough form of these statements.

18 1. PROLi.m DESCRIPTION, SOLUTION Tac-irquis AND RULES

ARRAY At,,, I < _ n, I < m < n INPUT

PROCESSORS PA HAS At,,., 1 < I < n, 1 < m < n

ARRAY Bl,,, 1 < I n, 1 < m < n INPUT

PROCESSORS PB HAS B 1 ,,, 1 < I < n, 1 < m < n

ARRAY Ct,., 1 < I < n, 1 < m < n

PROCESSORS PC,,,,, 1 < I < n, 1 < m < n HAS C6,,

USES Aj,h, 1 < k < n

USES Bk,,, 1 < k < n
HEARS PA

HEARS PB

OUTPUT ARRAY DI.,, 1 < I < n, 1 < m < n

PROCESSORS PD HAS D ,,_, 1 < I < n, 1 < < n

USESClim1 <I<n,1 < rI< n
HEARS PCI,,I < I < n, 1 < m < n

ENUMERATE iE{1 ... } (1)

ENUMERATE J E{1 ... n} 0(n)
Ci E- 0(n')

kE{1 ... n)

D, - Cij, #(n 2)

REDUCE-HEARS is unable to improve this parallel structure, because there are no interconnec-
tions among the PCs to improve. Rule A6 is also helpless, although the topology of the intercon-
nection graph is too rich (C(n 2) rather than the goal of 0(n)). Rule A7 comes to the rescue. Adding
the HEARS clauses allowed by AT and by the USES clauses of PC produces:

, -, mit l l i l -ItIII

1 4 A DIRIVATION o FAST, PARALLEL AaRAY MULTIPLICATION I

ARRAY At,,, I < n, 1 < m < n INPUT

PROCESSORS PA HAS At,,,, 1 < i < n, 1 < m < n

ARRAY B1 ,,,, 1 < I < n, 1 < m < n INPUT

PROCESSORS PB HAS B.,, 1 < I <n, 1 < m < n

ARRAY Cl,,,, I < K n, 1 < m < n

PROCESSORS PC,,,, 1 < I < n, 1 < m < n HAS C',.

USES A,, I < k < n

USES Bk.,,, I < k < n

HEARS PA

HEARS PB

If m > I then HEARS PC,,,-

i l > 1 then HEARS PCi-,m

OUTPUT ARRAY Dl,., 1 < I < n, 1 < m < n

PROCESSORS PD HAS DI.,1 < I < n, 1 < m < n

USES C1 ,,, 1 < K ft I K M < n

HEARS PC,, I < I< n,1 < m < n

ENUMERATE iE{1 ... n} (1)
ENUMERATE jE{I... n) 6(n)

cij - ,B. (n3)
4E(It,... n)

Dii "- Cij #(n2)

Then rule AS is applied twice, and rule A5 once, finishing the derivation.

ARRAY Aim, I < I < n, I < m < n INPUT

PROCESSORS PA HAS Aim, 1 < I < ,I < m < n

ARRAY Bim, I < I < n, 1 < < n INPUT

PROCESSORS PB HAS Bim, 1 < I < n, 1 < m < n

ARRAY Cim, 1 <1 r, 1< m < n
PROCESSORS PC,,,, 1 < I < , 1 < m < n HAS Cl,m

USES A1 .,, 1 < k < n

USES B1 ,m, 1 < k < n

If m=1 then HEARS PA

If 1=1 then HEARS PB

if m > 1 then HEARS PCm

If I> 1 then HEARS PC,-,,

OUTPUT ARRAY Dim, 1 < I < n, I < < n

PROCESSORS PD HAS Di,,, 1 < < n, 1 < m < n

USES Ci,m, I < I < n,I < m < n

HEARS PCim, 1 < I < n, I < m < n

C3, '- E Al,1 Bk,m 5(n)
kE={... n)

Di,m .- Ci,, 6()

20 1. PaOBLam DBSCRIPMION, SOLUTioN TECHNIQUES AND RULES

§i.5 Creation of Virtual Arrays, Processor Aggregation

C

1.5.1 An Informal Description of the Techniques

Consider the enumeration in Subsection 1.3.2.2,

A;m C) 0 F(At, k, A,+k,m)
kC- (I... q-1)

There is an enumeration, but only over r-values. For this reason, use of separate processors wll not
be generated for the steps of the enumeration.

Now one can make a few changes to the specification in order to generate separate processors for
the steps of the enumeration. (This will be motivAted later.)

Generate the following vi rtualization, creating the array AO

ARRAY Ai,,.., I < m < n,1 I < <n- m+ 1,O 0< k < #(1...m-1)

A',,,., - haseo

ENUMERATE kE((1 ... m-1)) do
A',m((.m.,i--))-() 4- A.m,((l ..))-(i)-.1 0 F'(A.,,A4+&,mn -)

This structure represents several changes:

' First, it introduces a new dimension to the main array for each level of enumeration performed
to find a value for the old elements of the array.

s Second, the enumeration k E{1 ... m-1} into the enumeration k E((1 ... rn-i)) is changed. This is

perfectly legitimate-the set enumeration does not forbid enumeration in a specified order. When
we consider automating this process, however, we should remember that there are m! ordered
enumerations corresponding to a specific unordered one of length m. The best orderings to try will

probably include the arrival orderings inferrable from HEARS and HAS clauses, and the 'natural'

orderings, i.e. numerical order and inverse numerical order (where numbers are involved).

Of course, this only applies when the inner enumeration(s) enumerate over a set. When the
enumerand is already a sequence, this step and the fifth are unnecessary.

• Third, the value base0 , the value of (),E, is introduced.

• Fourth, the function ((I ... m-1))- , the inverse of ((I ... m-1)) considered as a function, is also
introduced. This will in fact be a function whenever it cun be shown thaL the sequence has no

duplicate elements, which will certainly be the case where the sequence is simply an ordering of
some set, and will often be the case otherwise.

• Fifth, the running totals implicit in the O(Dset) notation are explicated.

For P-time dynamic programming virtualization is worse than useless. The extra processors serve no
purpose, they need to communicate with each other, and their existence forces the data to arrive in
a specific order. More sophisticated virtualization heuristics could preduce a different virtualisation
and eventually a different parallel structure by choosing a different base case and enumeration order.
This technique is not useful on this specification.

1.5. CRIATION OF VIRTUAL ARRAYS, PROCBS$OR Aoc ROATION 21

However, consider the case of linear array multiplication. Application of the seven rules produces
the following parallel structure:

ARRAY A,.,, 1 < I < n, 1 < m < n INPUT

PROCESSORS PA HAS At,,, 1 < I < n, 1 <m < n

ARRAY B,,, 1 < I < n, 1 < m _K < INPUT

PROCESSORS PB HAS Bi,,, I < I < , 1 < m < n

ARRAY Cl,,,, 1 < I < n, 1 < m < n

PROCESSORS PC.,,, I < I < n, 1 < m < n HAS Cl,,,
USES At,, 1 < k < n

USES B;,.,,I < k < n

f m=1 then HEARS PA

f 1= I then HEARS PB

ifm > 1 then HEARS PC,m-i

if I > 1 then HEARS PC-,,,n

OUTPUT ARRAY DI,.,, 1 < I < n, 1 Km < n

PROCESSORS PD HAS Dl,,, 1 < I < n, 1 < m < n

USES Cjrn, 1 < I K n, 1 K in < n

HEARS PCI,,, I < I < n, 1 < m< n

S C1 ,, - E AI, Bh,m 0(n)

Dj. -- C9,,. 8(1)

The asymptotic behavior of this parallel structure seems to be the same as that for Kung's parallel
structure lKungLei-761. However, there can be an advantage of Kung's pzrallel structure over
the simpler one. With multiply "band matrices', where j-i < ko, 0 V -i -> kso =* Ai.j=O and
j-i < koj V j-i > kI,1 =* A 1,=0, it is possible to use fewer processing elements. If klo-ko,o +
l=wo and k1 ,-k,o + l=w,, then it can be shown that only (we + w,)n of the 2 processors
of our parallel structure can have non-zero answers, and only that many processors have to be
provided. With Kung's parallel structure, however, only wow, processors have to be provided. The
multiplication takes 6(n) time. (It is possible to use the 8((wo + w,)n) processors to multiply the
band matrices in (wo + wu1) time, but this parallel structure cannot be synthesized automatically
using these techniques, and in any event the time/processors tradeoff offered by Kung's parallel
structure may be desirable.)

The virtualization process, aloue, is not enough to synthesize Kung's systolic arrays. Notice that the
number of processors in the parallel structure that results from the obvious virtualization is 9(y 3).
Partial sums of product array elements reside in different processors at different times. This feature
makes some technique like virtualization necessary to separate the computation of partial products,
but processors have to be grouped to prevent this processor count blowup. Another more difficult
technique, aggregation, will reduce the processor count to the target level.

Heuristically, aggregation is the grouping together of processors, each of which does a small amount
of work, into groups of processors, each represented by a single processor. Each processor does all of
the work that any processor in the original group did, but this can still be done quickly because each
of the processors in the original group had a small amount of work to do, and no two processors had
to do their work at overlapping times.

The :eason why Kung's parallel structure can multiply arrays in linear time using constant space
per processor is that he has performed a virtualization on the summation of result array elements.

He avoids the need for n 3 processors by a process called processor aggregation. Each processor is
responsible for computing 0(n) elements of the virtual array.

Is 1. PRoID.Li DaSCRIPTION, 3OLUTION TzcY"B NIQUZ2 AND RUL9S

Reasoning similar to that performed in the change-of-basis generator and theorem prover will serve
us well here The target interconnection structure is

PROCESSORS PI,., -n _< m _< n, -n < I < n-n + 1

HAS C,,.,k, 1 < i < n, I < j n, 1 < k < n, i-j=l-m, k= min(n--t- In + m + 1, n)

USES A,,, 1 < i < n,1 < j <_ n, i-j=l

USES Bij, I < i < n, 1 < j : n,i-j=m

HEARS P- I,,

HEARS PL,-+I

HEARS P,+I,m-,

which is Kung's structure. This requires two changes of basis of input arrays (i-j of both A and
B, rather than either i or j), and a change of basis for the C array, as well as some rather subtle

timing arguments and replacement of the summation of each C-array element over a set of integers

to a s-ammation over a sequence of integers.

The figures on the following pages illustrate the virtualization and aggregation processos, as they

apply to an n=3 instance of a matrix multiplication problem.

1.5.2 Formal Definitions of Aggregation and Virtualization

Definition 1.12. A ,irtualization of a parallel structure is a new parallel structure that results from

I adding a dimension to an arrag, say A, -roducing A! as follows: if A; is a defined element of A,
and the computation of A- is performe1 by enumerating n elements of some set or vector S and
performing a binary operation on a running total and each element of S as it ii enumerated, then
A im far 0 < m <_ n will be a defined element of the new array, A;

• making the enumeration of S an ordered one; and

• ,eplacing the original enumeration/calculation with a calculation that ezplicitly folds the P* value

of the ordered enumeration as performed for A; by operating on At i1 2 and that jh element.

The process of creating a virtualization is also called virtualization.

Definition 1.13. An aggregation of a parallel structure is a new parallel structure that results from
partitioning the old set of processors of a family into equivalence classes, and creating a processor for
each equivalence class. A processor in the aggregation HEARs another such processor if any processor
in the first equivalence class HEARd any processor in the second.

The process of creating an aggregation is also called aggregation.

There are, of course, an intractible number of possible aggregations according to this definition.
Only simple aggregations are worthy of consideraton, because allowing complex ones would lead

to a combinatorial explosion and because the complex ones would tend either to leave too many
interprocessor connections or to have too much work being done in some of the processors.

Suppose that the virtualized family of processors is defined as

Pz1 .z,..... (enumers) (written P)

We feel that interesting aggregations would identify

V,: 3 Ps,Ps+i; =* Pi P

where '=((i 1 ,i2 ... i,,)), all the ij E({1,0, 1}, and I ranges over integers. Here 3 P... means that a

given processor exists (and is not out of bounds of the original virtualization.) Early aggregation
systems will confine themselves to this case.

I B. PRACTICALITY CONSIDURATIONS

1.5.3 What Virtualization Can and Cannot Accomplish

An importa1nt measure of the cost of a parallel structure is the product of the number of processors,
the size of each one, and the amount of time the parallel structure takes to do a calculation. I will
call this the PST measure.

PST--((wo + wo)n 2) for the simpler parallel structure for matrix multiplication, when applied to
band matrices of widths wo and wl. Virtualization and aggregation can improve this to f(wown)
by reducing the number of processors while allowing the size of the processors and the running time
of the algorithm to remain the same.

It is possible to achieve PST=e((wo + w 1)
2 n 2) by other means. This is equivalent whenever

w 1 l--(wo). Divide the n X n array of potential processors into (wo 4- w) X (wo +" w) blocks
and introduce input and output connections at the appropriate edges of each such block. This is
impossible to derive by techniques shown so far, or reasonable extensions to them. It has the further
disadvantage that the number of connections to input and output processors is 0(n) , while the
same number is $(wow) for the systolic array parallel structure that results from virtualization and
aggregation. A complexity measure that took into account the connections to the I/O processors
would favor the systolic array structure even over the improved simple matrix multiplication scheme.

It should be noted that the parallel structure resulting from partitioning the potential processors
has the same PST as systolic arrays, but P and T are different. Different measures, such as PST 2

may make different parallel structures more desirable.

11.6 Practicality Considerations

In addition to the results described above, we have investigated the problems that will be encountered
when automatically derived parallel structures are used. A parallel structure will in general specify
a collection of interconncctions that may not correspond to any 'off the shelf" product. We have
begun to develop several concepts which Kestrel intend to explore further in 1983, but we will
describe them briefly here. These considerations will be important when actual use of a system for
automatically generating parallel structures is contemplated.

1.6.1 Basis Change

The topology of a parallel structure may be the same as that of an existing multiprocessor machine,
but this fact may not be evident because of the nature of the indices. Suppose, for example, that
multiprocessor systems of various sizes organized as square grids were commonly available, but that a
user had submitted an instance of P-time dynamic programming to the parallel structure generator
and received the result described above. The parallel structure's topology fits half of a square grid,
but this fact is 'hidden" under our choice of indexing. A change of basis can expose this fit.

1.8.2 Granularity Considerations

Many of the rules in this derivation system (and most of the need for inference) results from our
unwillingness to consider as realizable a parallel structure where every processor is connected to
every other. A consideration we labelled granularity persuades us that even a parallel structure in
which every processor is connected to only a constant number of other processors and where the
interconnection diagram is planar may be unrealizable in the future, where it will be common to
have more than one processor, but not a complete system, on a *chip'.

The d-dimensional lattice architecture may not be the ideal architecture for hardware implementation
for a couple of reasons to be discussed in this section. One reason is that the connections specified
may be too rich for an efficient VLSI implementation.

24 1. PROBLIM D&SCRIPr|ON. SOLUTION TECHNIQUES AND RULES

When a multiprocessor system is built on a single chip, or wben each processor of a multiprocessor
system is on its own chip, the concepts we intend to introduce are of no importance. However, it
is important to consider the case where each chip contains several processors, but not a complete
3ystem.

The maximum practical "pin count' of a chip may limit efforts to place ever increasing numbers of
processcrs on a chip as our fabrication technology improves. This is a separate limitation from wire-
count limitations and planarity limitations. For example, in a two dimensional array of processors
(each processor has two coordinates, each within a range of integers, and Pj is connected to Pij'+
and P1 ±,jj) the interconnection is obviously planar and the number of wires is proportional to the
number of processors. This topology is therefore realizable on a single chip or mn a configuration
with one chip per processor. However, if our technology would otherwise allow N 2 processors on
a chip, and a system with M >- N 2 processors is desired, the number of busses from one chip to
others would be 4N (except for chips on the edges of the array). This may require more pins than
can he placed on a compact package.

To see how the various proposed architectures fare under the criterion of minimizing pin count as
processor- per-chip count increases, consider the following table.

interconnection geometry busses per ,N-processor chip in M-processor system

complete interconnection NM

perfect shuffle 2N"

binary hypercube N(log(M/N))"

.i-dimensional lattice 2____ d
_

) l
_

augmented tree 2 log(N + 1) + 1

ordinary tree 3

Figure 6. Interconnection Requirements for Various Architectures (tentative)

It may be possible to improve bounds marked with an * by an asymptotically small factor using
suitable constructions. Such improvements will not yield a qualitative difference in the sense of the
argument.

For any architecture above the horisontal line, any decrease in X (the element size of a chip's logic
elements or integrated wires) is useless without a proportional decrease in the chip's pin spacing.
This is not true for architectures below the line. For those architecture, it is possible to preserve the
pin spacing as X decreases, provided the chip's area or pin density is increased modestly.

In the tree structured architectures, most of the processors will be in multiprocessor chips, which
we call leaf chips because they contain the leaf processors. These chips each hold 2i leaf processors
for some j, plus 2i- 1 other processors necessary to tie the leaves together. Pairs of chips, including
leaf chips, will be tied together with single processor chips having three busses each (or five for
augmented architectures; see Figure 7). The number of single processor chips is one less than the
number of leaf chips.

A construction that eliminates the single-processor chips in return for increasing the buss connections
required for all chips by a modest constant factor has been described [BhattLei-821.

Acknowledgements to Section 1

I wish to take this opportunity to thank the various people who have been extremely helpful to me
while I was preparing this paper:

• Tom Brown, who helped me to debug several of the more complex rules and who kept me honest
as to what a theorem prover could be expected to do efficiently,

• Tom Pressburger and Cordell Green, who helped me to get the English right, especially in the
description of Dynamic Programming, and

• the rest of the gang at Kestrel, who listened to innumerable versions of the talks I gave while I
was debugging the concepts involved.

Section 2

Inference Requirements Analysis and Implementation Proposal

by

Tom C. Brown
Kestrel Institute

October 1982

12.1 Introduction

Inference requirements for two of Richard King's concurrent computing system synthesis rules

(MAKE-USES-HEARS AND REDUCE-HEARS) are analyzed and shown to be

• intractable in their more general forms

b tractable under realistic constraints which include the applications thus far considered.

The ad-hoc constraints bring to bear special-case decision procedures for extended Presburger arith-
metic and systems of linear constraints [Shostak-77,79,81].

The first rule [J 1.3.1.31 documents data-flow dependencies for iterative array computations. Each
element of an O(nP) - element array is defined exactly once by a sequence of iterative array-
element assignments using inputs and previously defined array elements. The sclution is in effect
a parameterized description of a disjoint covering of the computation-array index set. Under
reasonable constraints this covering can be computed in linear time and verified (disjointness,
completeness) ir quadratic time, as a function of the number of iterated assignment statements
in the input specification.

The second rule ', 1.3.2.1] recognizes a phenomenon called srowbaling, wherein each member of an
0(n)-element ordered array or processor family depends on results of each predecessor. This 0(n 2)
dependency pattern is reduced to an 0(n) connection pattern wherein each processo)r receives results
from its immediate predecessor (or input) and forwards them (plus its own result) to its immediate
successor (or output). Heuristic guidance for the solution is extracted from

b the physical adjacency postulate: processors with "nearby" indices are candidates for immediate
connection (the Hears relation)

h the linearity postulate: each HEARS clause defines a linear one-dimensional (O(n)) subfamily of
the processor index set.

These constraints are easily tested. Once verified, the snowballing property reduces to a simple test
which, instead of being 0 (22 i*) as in the general Presburger-arithmetic decision problem [Shostak-791
of which it is an instance, is linear (in the input HEARS-clause length, under reasonable assumptions,

2 .4-5).

2.2. DATA FLOW ANALYSIS Jr?

12.2 Data Flow Analysis

The MAKE-USES-HEARS rule operates on a specification wherein a procewiior has been assigned
to each computation array element and each 1/O array. It e~xtracts from the program a set of inferred
conditions and corresponding USES and HEARS clauses. The conditions are inferred from index
ranges of enumerated (iterated) assignment statements. The rule makes allowances for the fact that
iteration index variables need not correspond to Processor index variables, or that first even and
then odd rows may be computed, etc.

Consider the schema [King-821,

1 PROCESSORS Pl.,, 1 <mI < n, 1< L< n-n- +
2 HAS Aim,

3 PROCESSORS Q
4 HAS l, I <n
5 PROCESSORS R
6 HASO0

T enumerate e' 0(1 ... n)) do

8 A', 1 I 4- 1,!

9 enumerate rn'E((2 ... n)) do
10 enumerate e E{1 ... n-rn' + 1) do
11 Avi,ml, (D F(A4i'k,Ai+'m,

120.-Al,n

Following line 2 we should use lines 7-8 to infer the condition

(P.3a) If m=1 then

USES vi,i 1 I< n

HEARS Q
because the assignment (line 8) binds mn to 1 and sets Ap,I=v1.(1'=1 ... na).

Similarly, we should adjoin the clauses

(P.3b)1if2 <m I < nthen

1 USESA.4,k, 1 !,k <rn-I
HEARS PIk, 1 < k < rn-i

2 USES A+,mnk, I ! k <rn-1
HEARS Pl+k,mkI,i < k <rn-1

where again the inferred condition 2 < m < na is dnrived directly from the controlling enumeration
(line 9). The two subclausos (1) and (2) are not part of the inferred-condlitions derivation whose
automation is the subject of this section; however, the rule derives (1) by selecting Ap,&', in line 11
and noting that the definition of A,,,,,,, uses AI,A for k1=1, ... I ,m'-I, and similarly for (2) using

Ai'k',.'-'.These mechanisms are already encoded in King's rule.

In general the inferred conditions problem is, given declaration

18 2. INFSRSNCz RaqUIRM3NIS ANALYSIS AND IMPLIMINTATION PROPOSAL

ARRAY Ap ix:RI, ... ,s,:R, (1)

with domain {1:RI A ... A Rp} and a list of iterated asignmenta

enumerate 7':5,

enumerate j,:Sq
Am) .-G[-, ,(7,1,)1 < I < r] (2)

verify that the corresponding sets

{f(j):St A ... A Sq (2')

form a disjoint covering of {1:R 1 A ... A Rp}. Clearly this condition is best tested by expressing
each condition (2') in the form

{ A:st A ... A Sf} (3)
where S .[f(1-)='s A S()1; moreover, (3) is exactly the inferred condition required. Clearly

(3) is uniquely defined from (2') iff f is injective (one to one) on {7:S A ... A Sq}; otherwise A.)
is defined twice.

To ensure effectiveness of the reduction to (3) we require that f be a linear transformation from Zq

to ZP:

f ') k=e X 7 + d (4)

where ? X 7 is the inner product of ?, and . Similar linearity constraints are placed on RA,, Sh -
e.g. Rh has the form

Lk _ c,, X j,% + Dk _ u(5)

where Lk, Uk, CA, Dk may contain j, free.

Now the covering of {7:R} (A's domain) is disjoint iff St A T! is unsatisflable for each pair (SI, TI)
such that {I:SI) and {:TI) are distinct instances of (3). In this conjunction n is a Skolem constant.
The disjointness condition can be readily tested if in (3),

Sf A ... A Sf is a Presburger formula with constants (e.g. 7, n) (6)

Then the decision procedure of [Shostak-79] applies. This condition is clearly satisfied by the above
example, and all others in fKing-82j.

The covering condition can be tested similarly. If {i:T1), ... , {?:T,) are the instances of (3) then
they cover {1:R} iff

Vn, 1'.(R =, T, V ... V T,

2.3. RaDUCiNG PROCZSSOR INTERCONKNCTION Deoaes *9

which reduces to extended-Presburger decidability of

R A- T, A ... A- T_.

Notice that the HEARS clause for (2) is obtained by first transforming thc assignment (2) with
constraints St A ... A Sq on j into an assignment

A(J) ,- Gf IAg,), < I<,

with constraints Sf A ... A 5f on ,. This implies that gijF) must also be linear. The FE are
variables bound by iterated operators in Gf[...] - e.g., (O'EI,(l,.,-,) F(..)) in line 11 above.

To conclude, the inferred-conditionj function requires moderate ability to reason about systems of
symbolic inequalities in extended Presburger arithmetic, to rename variables and to invert linear
operations appearing in such formulas.Initially the inferred-conditions transformation may be imple-
mented (for the case considered) by an interactive flow-analysis with linear-operator manipulation
and extended Presburger inference capabilities.

J2.3 Reducing Processor Interconnection Degree

2.3.1 Problem Statement

Given a program statement

PROCESSORS PNAMEpav PITER ... HEARS PNAMEav HITER (1)

where

PBV = processor bound-variable list,
HBV = H3V(PBV, k),
k = boizd variable(s) not in PBV iterated by:
HITER = H: ER (PBV, n, k), iterator over k

Define F=F('1)={PBV:PITER(P BV, n)}, the processor-family (index set) and
H=H(')={(a,b):P!TER(a,n) A b= IihBV(a,k) A HITER(a,n,k)) the Hears relation of (1).
Define H,, the processors HEARd by

H.=(b:Ha I

SO 2. !Nr&R5Ncs RISQUIRSMUNTS ANALYStS AND IMPLIMNNTATION PRtOPOSAL

Recall now the definitions of "telescopes' and 'snowballs':

m, H telesco pes if either H. C H6, 116 g H., or H4 flH&=0, i.e. , V a, bE Fl!4 fl lbE{0, H tH}

b- H s no wballs if it telescopes and VQa, b,ZEF4O C H. C H& A H.U (z}=HI =*; =]

If H snowballs then HITER(PBV,n,k) in (1) is 'reduced" by setting k=-k0 where
HITER(PBV, n, ko) and HBV(PEV, k0) is the index in Hp~v "closest" to PJ3V (using sum of
absolute coordinate-differences 3s metric).

2.3.2 Example:

An application of MAKE-USES-HEARS in [King-821 generates a statement

PROCESSORS Pim,, 1 < m < n, < n-m + I

If2 <m <n then

HEARS PiLk, 1 5k < rn-i (a)
HEARS 1 < k < rn-I (b) (2)

Clauses (a) and (b) each generate snowballing Hears-relations, and are reduced respectively to

HEARS Pi^- I (a)
HEARS P+1^_ 1 (b)

It may be helpful to illustrate the resulting pattern for the case n=5 (b):

Se. the soe at lb. gad of Wei sectio..

2.3. RenucwNo PLocZssoK 19TULIMONNZCTON DzoRzR 31

N N reduced: 0 4

(yII£ARS z)

\ -\ \ "r~s,N~~~ ,.teduced, - -

3' (yHEARS z)

2

24 (.

Figure 7. HEARS clause (2b)

Notice that in (a) the clause is reduced by setting k=m-1 whereas in (b) it :s reduced by setting

k=l. Both clauses can be effectively normalized so that the solution will be to set k=maximai value
(below),

2.3.3 Remarks on 'General Theorem-Proving Approach*

Without constraints on (I) the snowballing property can be quite intractable. Even if PITER, HBV,
and HITER are constrained so that only extended-Presburger formulas result, the problem may be
intractable without additional constraints and/or expertise on the Presburger problem-domain.

Thus given (2b), we would extend a Presburger arithmetic basis (or specialized prover) with pairing
axioms

hd(z,)=z, tl(z, ,)=u

Integer(z) V (hd(z), tl(z))-=z

Then

F(u) t1 < tt(u) !5 n A 1 < hd(u) :_ n-l(u) + I

H., * tl(v)-tl(u) + hd(u)-hd(u)

A 1 < Jd(t)-hd(u) < tl(u)-I < n

A I < hd(u) < n-tl(u) + I

are derived following (1).

To prove Telescopes (H) we assume not, for tome a, b, 1, E E F(n), and derive a contradiction:

U 2. INPSRINCS RSQ1UIRSMBNTs ANALY513 A.ND NMPLEMBNTATION PROPOSAL

F(a) A F(b) A F(d) A F()

Hac ~ H. n Hb 34

Hb, IHd

false }via Integer-Arithmetic, Pairing Axioms

To prove Snowballs (H), we assert its negation for some a, b, r, d in F(ns):

F(a) A F(b) A F~c) A F(d)
- H,,, v H,,, v - Hys, V Hza, v Has, V Ilya

- Haz V Hbz

- H . V (H..) V [x=cJ

false

where the second clause asserts 'snowballs' and Z, Y, 21, Z2, X3 are universally quantified variables.
These axioms are in a form which can be given to the LMA prover [OverLusk-8O1.

We expect that speciali~ed knowledge of extended- Presburger arithmetic decision procedures and
Integer programming will be required (at least) for success of so direct an approach to this class of
problems. Another approach is to further constrain the problem without excludiing the common
cases of interest.

2.3.4 Heuristic Constraints

Notice that snowballing HTEARS clauses define 'one-dimensional" transitive relations over F - e.g.
the two-dimensional HEARS clause

HEARS PmI < f I + (rn-rn')

which 'merges" (a) and (b) of (2) does not satisfy the 'snowballs' predicate. Indeed its "reduction"
would result in 0(n2) processors sending data through two asymptotically hot wires. Thus we lose no
generality in constraining HITER (1) to iterate a single parameter (k) over a finite integer subrange
dependent on PBV,n:

HITER = [L(PBV, n) :5 k < U(PBV, n)] (3)

Another plausible constraint is that each one-dimensional subfamily of a snowballing HEARS be a
"linear" Subset of the lattice points over which HBV ranges - e.g. , for PBV fixed,

2.3. RSoUCINo PROC3ssOR INTIBRCONNNUCTioN DsoREE 9

HBV(PBV, k) is linear in k (4)

Equivalently, the first differential in k

HBV(PBV, k +- 1) -HBV(PBV, k) (5)

is independent of k. Indeed, we find plausible the itronger coustraint,

(5) is constant (indepenident of both k and PBV). (6)

After all, if (5) varies with PBV then distinct colizear H-subsets of F have diiTerent slopes and are
"likely" (though not required) to intersect, in violation of the telescopes constraint.

These constraints yield a norrnalform for each 'linear snowball*(Figure 8):

REARS P.NAME r(,,,)+hkc, 0 < k < L(z, n) (7)

where C is a constant vector (the slope) and

z=F(z, n) - - L(z, n) -C (8)

where F(z, n) is the most-distant HEARd point and k=L(z, n)-1 selects the nearest HEARd point
(in taxicab metric: sum of absolute coordinate differences):

'F (z, n) + k-C (k=3)

F(z,n)

Figure 8. A Linear Snowball

Note that F(z, n)=F(z', n) for each z' on the line; thus F(z, n) 34 F(z', n) implies H. flH',=0.

2.3.5 Example. The HlEARS clauses of Example 2.3.2 have normal forms:

(a) HEARS P(1,1)+&.(o,l1), 0 < k < rn-1

Mb HEARS P(L+ -m1+h.(-1,i),0 < k < -i-

2.3.6 Linear Snowball Recognition-Reduction Pro~cedure

Given BEARS clause (1) with HITER as in (3):

Step 1. Verify (6)

Step 2. Put (1) in normal form (7)

34 2. INriRacNCm RaqUIR3MINTs ANALYSIS AND !mPLzmsNTATION PROPOSAL

Step 3. Verify (8)

Step 4. Verify (9) (for 0 < k < L(z, n)):

F((F(z, n) + k . C), n)=F(z, n) (9)

Step 5. Reduce (7) to (10):
HEARS PNAMEr(Z,N)+(L(Z,N)-).c (10)

Failure of any verification attempt above implies return with failure (i.e. , the REDUCE-HEAR

rule does not apply). This procedure suggests a refinement of King's rule to two rules, a
NORM ALIZE-HEARS rule which tests (6), and a REDUCE-NORMALIZED-HEARS rule
which implements the remainder of this procedure. I

2.3.7 Correctness and Complexity of REDUCE-HEARS Refinement

The constraints (3)-(6) can be tested in linear time, provided that HBV(PBV, k) contains no
non-!inear symbolic expressions in (PBV,k). (Note that a linearity claim must exclude perverse
specifications such as T(n) X PBV(1)2 x V where T(n) is some arbitrary arithmetic formula which
eventually simplifies to zero.)

Given similar non-perverse linearity constraints on L(PBV, n), U(PBV, n) of (3), we assert linearity
of tthe normal-form conversion (7). Condition (8) is a consistency test; it distinguishes the linear
snowball F(z, n)+ k C from the non-snowballing HEARS index F(z, n)+ k C+ D, D 3 6. Certainly
it is conceivable that F(z, n) and L(z, n) might contain symbolic constants whose values would decide
truth or falsity of (8); in this event REDUCE-NORMALIZED-HEARS should admit failure and
ask the user what is going on. (Thus far we have no experience with such specifications).

Now 9) is precisely what we need (given (8)) to assert that H telescopes:
H. n H'.=0 t F(z, n) 3; F(2, n);-

H. n H. E{H., H'.} * f(z, n)=f(z, n).

Again its verification (under the non-perversity assumption) requires only a linear-time simplification
of a symbolic linear expression; the constraint that k < L(z, n) has nothing to do with its truth or
falsity.

To conclude, the snowballs antecedant (2) now reduces to

(Fa, n) + k . C:O < k < L(a, n)} U{z}

=(flb, n) + k . C:o < k < Lb, n)},

which implies L(b, n)=L(a, n) + I by telescoping (F(a, n)=F(b, n)). Therefore

z=F(a, n) + L(a, n) . C=a

by (8), as required. We have proved the following:

Theorem 2.1. If Procedure 2.3.6 returns successfully with reduced HEARS clause (10) then it is a

reduction of the (linear) snowballing HEARS clause (1). |

§2.4 Conclusions

Significantly, Procedure 2.3.6 does recognize the class of snowballs thus far encountered (and which
we expect to encounter) in linear time, instead of the super-exponential (worst-case) time which we
.might initially fear for the unconstrained theorem-proving approach of J 2.3.3. Both this and the
inferred conditions problem illustrate the important heuristic of restricting the problem domain so
that simple procedures can be applied.

Note

The REDUCE-HEARS analysis is based on a somewhat less refined (and earlier) definition of
.snowballs" than the one used in Section 1. Under the heuristic constraint of 1 2.3.4 the two concepts
are equivalent. R. King provided a discriminating example:

F-=-{O, 1, ... , n}I

H ={(I,k):O < k < 2[' A I< n}

It snowballs according to Section 2 but not according to Section 1. It violates the heuristic constraints
of J 2.3.4 because 2LI/21 is not a linear function of 1. That it can be made into a snowball according
to Section 2 by adjoining n/2 additional HEARS edge3 ('rounding and reducing') suggests that
both definitions merit consideration. A sequel to this report will present a simplified analysis in
terms of the more refined definition.

Acknowledgements to Section 2

I wish to thank Richard King for his critical analysis, examples, counterexampies, and generally
patient explanations of the workings of the synthesis rules. Both Richard and Carol Lei provided
extensive as3istance in the editing and Thxification of this document.

References

jAhoU1-721 Aho and Ullman "The Theory of Parsing, Translation and Compiling"; Volume 1
Pp. 314-320

AHU-741 Aho, Hopcroft and Ullman "The Design and Analysis of Computer Algorithms"
Pp. 67-68

'BbattLel-821 Sandeep N. Bhatt and Charles E. Leiserson 'ow to Assemble Tree Machines"
Proceedings of the 14th Symposium on Theory of Computing, Pp. 77-83

'Brownlng-801 Sally A. Browning "The Tree Machine: A Highly Concurrent Computing
Environment" California Institute of Technology Ph. D. Thest.,

GCF-81[Cordell Green, Daniel Chapiro, and Thomas Pressburger 'Research on Synthesis
of Concurrent Computing Systems" Kestrel Tech Report

jGKT-T9j L. J. Guibas, H. T. Kung and C. D. Thompson "Direct VLSI Implementation of
Combinatorial Algorithms" Procedings of the Caltech Conference on VLSI, January
1979

iOverLusk-80] R. A. Overbeek and E. L. Lusk "Data Structures and Control Architecture for
the Implementation of Theorem-proving Programs" LNC597, 5 h Conference on
Automated Deduction, 1980 Pp. 232-249

(King-82! Richard M King "Research on Synthesis of Concurrent Computing Systems' Tech
Report KES.L 82.1, Kestrel Institute, May 1982

Knuth-731 Donald Knuth "The Art of Computer Programming*; Volume 3 Pp. 433-447

[KungLei-761 H. T. Kung and Charles E. Leiserson *Systolic Arrays for VLSI"

Shostak-T7] Robert E. Shostak "On the SUP-INF Method for Proving Pressburger Formulas"
JACM24 Oct. !977 ?p. 529-543

iShostak-T9i Robert E ShostAk 'A Practical Decision Procedure for Arithmetic with Function
Symbols" JACM26, April 1979 Pp. 351-3 60

Sbostak-811 Robert E Shcs-ak 'Deciding Linear Inequalities by Computing Loop Residues"
JACM28, Oct. 1981 Dp. 769-779

DIAT j

L M'l

